Expression of retinoic acid receptor beta mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells.
نویسندگان
چکیده
The expression of the retinoic acid receptor beta (RAR beta) mRNA is absent or down-regulated in most human breast cancer cell lines. To investigate the role RAR beta may have in regulating the proliferation of breast cancer cells, we used retroviral vector-mediated gene transduction to introduce the human RAR beta gene into two RAR beta-negative breast tumor cell lines, MCF-7 and MDA-MB-231. RAR beta-transduced clones underwent growth inhibition associated with G1 arrest when treated with 1 microM all-trans-retinoic acid (RA). Moreover, the MCF7-RAR beta transduced clones also underwent apoptosis after 4 to 6 days of RA treatment. The RA-induced growth arrest in MDA231-RAR beta transduced cells is associated with c-myc mRNA down-regulation, whereas the RA-mediated apoptosis of MCF7-RAR beta transduced cells is not associated with c-myc down-regulation. These observations suggest a critical role for RAR beta in mediating growth arrest and apoptosis in breast cancer cells.
منابع مشابه
افزایش اثرات درمانی سیس پلاتین و 5- فلورواوراسیل بر روی ردههای سلولی AGS و KYSE-30 با استفاده از تیمار ترکیبی رتینوئیک اسید تمام ترانس
Backgrounds and Objectives: All-trans retinoic acid (ATRA) which is a derivative of vitamin A, exert fundamental effects on regulation of cell growth, differenation and apoptosis. Recently, resistance to cisplatin and 5-fluorouracil developed in gastric adenocarcinoma and squamous cell carcinoma. In this study, we investigated the combination treatment of ATRA with cisplatin and 5-fluorouracil ...
متن کاملRetinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells.
Retinoids are known to inhibit the growth of hormone-dependent but not that of hormone-independent breast cancer cells. We investigated the involvement of retinoic acid (RA) receptors (RARs) in the differential growth-inhibitory effects of retinoids and the underlying mechanism. Our data demonstrate that induction of RAR beta by RA correlates with the growth-inhibitory effect of retinoids. The ...
متن کاملHOXA5 acts directly downstream of retinoic acid receptor beta and contributes to retinoic acid-induced apoptosis and growth inhibition.
The promise of retinoids as chemopreventive agents in breast cancer is based on the differentiation and apoptosis induced upon their binding to the retinoic acid (RA) receptor beta (RARbeta). We have previously shown that HOXA5 induces apoptosis in breast cancer cells. In this study, we investigated whether RA/RARbeta and HOXA5 actions intersect to induce apoptosis and differentiation in breast...
متن کاملتاثیر رتینوئیک اسید تمام ترانس و ترکیب آن با سیس پلاتین بر روی بقاء رده سلولی سرطان معده(AGS)
Introduction & Objective: All-trans retinoic acid, a derivative of retinoids, is widely used to in-duce prolifferation, differentiation and apoptosis in normal, precancareous and cancerous cells. Cisplatin, an effective drug for cancer treatment, induces apoptosis via cross-linking to DNA. Previous studies on ovarian and melanoma cancer cells have showed synergistic ef-fects of cisplatin and ...
متن کاملRetinoic acid-induced growth arrest and differentiation: retinoic acid up-regulates CD32 (Fc gammaRII) expression, the ectopic expression of which retards the cell cycle.
Retinoic acid is known to cause the cell cycle arrest and myeloid differentiation of HL-60 myeloblastic leukemia cells. Evidence suggesting the possible involvement of the Fc gammaRII immunoglobulin receptor in mediating retinoic acid-induced growth arrest and differentiation of HL-60 cells is presented. HL-60 cells stably transfected with the delta205 mutant polyoma middle T antigen, a largely...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research
دوره 6 9 شماره
صفحات -
تاریخ انتشار 1995